First commit

This commit is contained in:
José Carlos Cuevas 2013-08-29 19:31:20 +02:00
commit a7db7bced3
18 changed files with 1106 additions and 0 deletions

BIN
.Makefile.swp Normal file

Binary file not shown.

BIN
.main.c.swp Normal file

Binary file not shown.

BIN
.mandel_classic.c.swp Normal file

Binary file not shown.

BIN
.mandelbrot_kernel.cl.swp Normal file

Binary file not shown.

BIN
.sum_kernel.cl.swp Normal file

Binary file not shown.

BIN
.vector_add_kernel.cl.swp Normal file

Binary file not shown.

1
CL Symbolic link
View file

@ -0,0 +1 @@
/opt/intel/opencl-1.2-3.0.67279/include/CL

38
Makefile Normal file
View file

@ -0,0 +1,38 @@
# MandelCL Makefile
CC=gcc
# Flags!
SDLFLAGS=$(shell sdl-config --cflags)
# Comment this line and uncomment the next to get Julia fractals
CFLAGS=-c -Wall -O2 $(SDLFLAGS)
# CFLAGS=-c -Wall -O2 -DJULIA $(SDLFLAGS)
# CFLAGS=-c -Wall -ggdb $(SDLFLAGS)
# Libs!
SDLLIBS=$(shell sdl-config --libs)
LIBS=-lm -lpthread $(SDLLIBS)
# Includes!
INCLUDE=-I/usr/include/SDL
all: mandelclassic test
mandelclassic: mandel_classic.o
$(CC) $(INCLUDE) mandel_classic.o $(LIBS) -o mandelclassic
mandelclassic.o: mandel_classic.c
$(CC) $(CFLAGS) $(INCLUDE) $(LIBS) mandel_classic.c -o mandel_classic.o
test: test.o
$(CC) $(INCLUDE) test.o $(LIBS) -o test
test.o: test.c
$(CC) $(CFLAGS) $(INCLUDE) $(LIBS) test.c -o test.o
.PHONY: clean
clean:
@rm *.o mandelclassic test

38
frag_shader.glsl Normal file
View file

@ -0,0 +1,38 @@
void main(void)
{
float zoom = float(iMouse.x) / float(iResolution.x);
float pos_x = ((float(gl_FragCoord.x) / float(iResolution.x)) * 3.5 * zoom) - (2.5 - (1.0 - zoom));
float pos_y = ((float(gl_FragCoord.y) / float(iResolution.y)) * 2.0 * zoom) - (1.0 - (1.0 - zoom));
float x = 0.0;
float y = 0.0;
int iteration = 0;
float normal_iter = 0.0;
int max_iteration = 255;
float xtemp;
while (iteration < max_iteration)
{
xtemp = x * x - y * y + pos_x;
y = 2.0 * x * y + pos_y;
if ((x * x) + (y * y) >= (4.0)) break;
x = xtemp;
iteration++;
}
if (iteration >= max_iteration)
{
gl_FragColor = vec4(0.0,0.0,0.0,1.0);
}
else if (iteration < 128)
{
normal_iter = float(iteration) / 255.0;
gl_FragColor = vec4(0,0.1 + normal_iter,normal_iter,1.0);
}
else
{
normal_iter = float(iteration) / 255.0;
gl_FragColor = vec4(1.0 - normal_iter, 1.0, 1.0 - normal_iter, 1.0);
}
}

209
main.c Normal file
View file

@ -0,0 +1,209 @@
#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#ifdef __APPLE__
#include <OpenCL/opencl.h>
#else
#include <CL/cl.h>
#endif
#include <SDL.h>
#define MAX_SOURCE_SIZE (0x100000)
int main(int argn, char **argv) {
// Init SDL
if(SDL_Init(SDL_INIT_VIDEO) != 0)
fprintf(stderr, "Could not initialize SDL: %s\n", SDL_GetError());
printf("SDL Initialized\n");
// Create screen surface
SDL_Surface *screen;
int res_x = 800;
int res_y = 600;
int current_line = 0;
int total_res = res_x * res_y;
screen = SDL_SetVideoMode(res_x, res_y, 0, SDL_HWSURFACE|SDL_DOUBLEBUF);
if(!screen)
fprintf(stderr,"Could not set video mode: %s\n",SDL_GetError());
// Prepare the resolution and sizes and colors...
int i;
int temp;
const int ITERATIONS = 256;
int *red_scale = (int*)malloc(sizeof(int)*ITERATIONS);
int *blue_scale = (int*)malloc(sizeof(int)*ITERATIONS);
for(i = 0; i < ITERATIONS; i++) {
red_scale[i] = i;
blue_scale[i] = 255 - i;
}
// Load the kernel source code into the array source_str
FILE *fp;
char *source_str;
size_t source_size;
fp = fopen("mandelbrot_kernel.cl", "r");
if (!fp) {
fprintf(stderr, "Failed to load kernel.\n");
exit(1);
}
source_str = (char*)malloc(MAX_SOURCE_SIZE);
source_size = fread( source_str, 1, MAX_SOURCE_SIZE, fp);
fclose( fp );
// Get platform and device information
cl_platform_id platform_id = NULL;
cl_device_id device_id = NULL;
cl_uint ret_num_devices;
cl_uint ret_num_platforms;
cl_int ret = clGetPlatformIDs(1, &platform_id, &ret_num_platforms);
ret = clGetDeviceIDs( platform_id, CL_DEVICE_TYPE_GPU, 1,
&device_id, &ret_num_devices);
// Create an OpenCL context
cl_context context = clCreateContext( NULL, 1, &device_id, NULL, NULL, &ret);
// Create a command queue
cl_command_queue command_queue = clCreateCommandQueue(context, device_id, 0, &ret);
// Create memory buffers on the device for returning iterations
cl_mem kernel_res_x = clCreateBuffer(context, CL_MEM_READ_ONLY,
sizeof(cl_int), NULL, &ret);
cl_mem kernel_res_y = clCreateBuffer(context, CL_MEM_READ_ONLY,
sizeof(cl_int), NULL, &ret);
cl_mem kernel_current_line = clCreateBuffer(context, CL_MEM_READ_ONLY,
sizeof(cl_int), NULL, &ret);
cl_mem graph_mem_obj = clCreateBuffer(context, CL_MEM_WRITE_ONLY,
res_x * sizeof(cl_int), NULL, &ret);
// Copy resolution x and y for the kernel
ret = clEnqueueWriteBuffer(command_queue, kernel_res_x, CL_TRUE, 0,
sizeof(cl_int), &res_x, 0, NULL, NULL);
ret = clEnqueueWriteBuffer(command_queue, kernel_res_y, CL_TRUE, 0,
sizeof(cl_int), &res_y, 0, NULL, NULL);
ret = clEnqueueWriteBuffer(command_queue, kernel_current_line, CL_TRUE, 0,
sizeof(cl_int), &current_line, 0, NULL, NULL);
// Create a program from the kernel source
cl_program program = clCreateProgramWithSource(context, 1,
(const char **)&source_str, (const size_t *)&source_size, &ret);
// Build the program
ret = clBuildProgram(program, 1, &device_id, NULL, NULL, NULL);
// Create the OpenCL kernel
cl_kernel kernel = clCreateKernel(program, "mandelbrot_point", &ret);
// Our screen in a linear array
int *graph_dots = (int*)malloc(total_res * sizeof(int));
cl_int *graph_line = (cl_int*)malloc(res_x * sizeof(cl_int));
for (current_line = 0; current_line < 600; current_line++)
{
// Set the arguments of the kernel
ret = clEnqueueWriteBuffer(command_queue, kernel_current_line, CL_TRUE, 0,
sizeof(cl_int), &current_line, 0, NULL, NULL);
ret = clSetKernelArg(kernel, 0, sizeof(cl_mem), &kernel_res_x);
ret = clSetKernelArg(kernel, 1, sizeof(cl_mem), &kernel_res_y);
ret = clSetKernelArg(kernel, 2, sizeof(cl_mem), &kernel_current_line);
ret = clSetKernelArg(kernel, 3, sizeof(cl_mem), graph_mem_obj);
// Execute the OpenCL kernel on the list
size_t global_item_size = res_x; // Process the entire screen
size_t local_item_size = 64; // Process in groups of 64
ret = clEnqueueNDRangeKernel(command_queue, kernel, 1, NULL,
&global_item_size, &local_item_size, 0, NULL, NULL);
// Read the memory buffer graph_mem_obj on the device to the local variable graph_dots
ret = clEnqueueReadBuffer(command_queue, graph_mem_obj, CL_TRUE, 0,
res_x * sizeof(cl_int), graph_line, 0, NULL, NULL);
for (i = 0; i < 800; i++)
{
graph_dots[(current_line * 800) + i] = graph_line[i];
}
}
// Display the result to the screen
/* for(i = 0; i < 3078; i++)
printf("Linear: %d -> %d\n", i, graph_dots[i]); */
printf("Rendering...\n");
int iteration;
Uint32 *pixel;
// Lock surface
SDL_LockSurface(screen);
// rank = screen->pitch/sizeof(Uint32);
pixel = (Uint32*)screen->pixels;
/* Draw all dots */
for(i = 0;i < total_res;i++)
{
// Get the iterations for the point
// printf("Point %d\n", i);
iteration = graph_dots[i];
if ((iteration < 1000) && (iteration >= 0)) {
pixel[i] = SDL_MapRGBA(screen->format,
red_scale[iteration],
0,
blue_scale[iteration],
255);
}
else
{
pixel[i] = SDL_MapRGBA(screen->format,
0,
0,
0,
255);
}
}
// Unlock surface
SDL_UnlockSurface(screen);
// Draw to the scree
SDL_Flip(screen);
// Clean up
ret = clFlush(command_queue);
ret = clFinish(command_queue);
ret = clReleaseKernel(kernel);
ret = clReleaseProgram(program);
// ret = clReleaseMemObject(a_mem_obj);
// ret = clReleaseMemObject(b_mem_obj);
ret = clReleaseMemObject(graph_mem_obj);
ret = clReleaseCommandQueue(command_queue);
ret = clReleaseContext(context);
// free(A);
// free(B);
free(graph_dots);
SDL_Event ev;
int active;
active = 1;
while(active)
{
/* Handle events */
while(SDL_PollEvent(&ev))
{
if(ev.type == SDL_QUIT)
active = 0; /* End */
}
}
SDL_Quit();
return 0;
}

462
mandel_classic.c Normal file
View file

@ -0,0 +1,462 @@
#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <pthread.h>
#include <math.h>
#include <SDL.h>
#define MAX_SOURCE_SIZE (0x100000)
#ifdef CACHE
int** cached_points;
int** cached_x;
int** cached_y;
#endif
int *iteration_pixels;
typedef struct point_args point_args;
struct point_args
{
int res_x;
int res_y;
int image_x;
int image_y;
float zoom;
int max_iteration;
int thread_number;
};
typedef struct piece_args piece_args;
struct piece_args
{
int res_x;
int res_y;
float zoom;
int max_iteration;
int total_threads;
int thread_number;
};
int get_x (int linear_point, int width)
{
return linear_point % width;
}
int get_y (int linear_point, int height)
{
return floor(linear_point / height);
}
float map_x(int x, int width, float zoom)
{
#ifndef JULIA
return (((float)x / (float)width) * (3.5 * zoom)) - (2.5 - (1.0 - zoom));
#else
return (((float)x / (float)width) * (3.5 * zoom)) - (1.75 - (1.0 - zoom));
#endif
}
float map_y(int y, int height, float zoom)
{
return (((float)y / (float)height) * (2.0 * zoom)) - (1.00001 - (1.0 - zoom));
}
#ifdef CACHE
int cached_iteration(float pos_x, float pos_y)
{
float centered_x = pos_x + 2.5;
float centered_y = pos_y + 1.0;
float temp_x = floor(centered_x * 1000.0);
float temp_y = floor(centered_y * 1000.0);
int trs_pos_x = (int)temp_x;
int trs_pos_y = (int)temp_y;
return cached_points[trs_pos_x][trs_pos_y];
}
float get_cached_x(float pos_x, float pos_y)
{
float centered_x = pos_x + 2.5;
float centered_y = pos_y + 1.0;
float temp_x = floor(centered_x * 1000.0);
float temp_y = floor(centered_y * 1000.0);
int trs_pos_x = (int)temp_x;
int trs_pos_y = (int)temp_y;
return cached_x[trs_pos_x][trs_pos_y];
}
float get_cached_y(float pos_x, float pos_y)
{
float centered_x = pos_x + 2.5;
float centered_y = pos_y + 1.0;
float temp_x = floor(centered_x * 1000.0);
float temp_y = floor(centered_y * 1000.0);
int trs_pos_x = (int)temp_x;
int trs_pos_y = (int)temp_y;
return cached_y[trs_pos_x][trs_pos_y];
}
void store_iteration(float pos_x, float pos_y, int iteration, float x, float y)
{
float centered_x = pos_x + 2.5;
float centered_y = pos_y + 1.0;
float temp_x = floor(centered_x * 1000.0);
float temp_y = floor(centered_y * 1000.0);
int trs_pos_x = (int)temp_x;
int trs_pos_y = (int)temp_y;
cached_points[trs_pos_x][trs_pos_y] = iteration;
cached_x[trs_pos_x][trs_pos_y] = x;
cached_y[trs_pos_x][trs_pos_y] = y;
}
#endif
int mandelbrot_point(int res_x, int res_y, int image_x, int image_y, float zoom, int max_iteration)
{
// Get the index of the current element
float pos_x = map_x(image_x, res_x, zoom);
float pos_y = map_y(image_y, res_y, zoom);
float x = 0.0;
float y = 0.0;
float q, x_term;
float xtemp, xx, yy;
#ifdef CACHE
int storeable = 1;
#endif
int iteration = 0;
yy = y * y;
// Period-2 bulb check
if (((x + 1) * (x + 1) + yy) < 0.0625) return 0;
// Cardioid check
x_term = x - 0.25;
q = x_term * x_term + yy;
q = q * (q + x_term);
if (q > (0.25 * yy)) return 0;
#ifdef CACHE
// Look up our cache
iteration = cached_iteration(pos_x, pos_y);
if (iteration > 0)
{
x = get_cached_x(pos_x, pos_y);
y = get_cached_y(pos_x, pos_y);
yy = y * y;
}
if (iteration < 0) storeable = 0;
#endif
while (iteration < max_iteration)
{
xx = x * x;
if ((xx) + (yy) > (4.0)) break;
y = (x + y) * (x + y) - xx - yy;
y = y + pos_y;
xtemp = xx - yy + pos_x;
x = xtemp;
yy = y * y;
iteration++;
}
if (iteration >= max_iteration)
{
return 0;
}
else
{
#ifdef CACHE
if (storeable == 1)
{
store_iteration(pos_x, pos_y, iteration, x, y);
}
#endif
return iteration;
}
}
int julia_point(int res_x, int res_y, int image_x, int image_y, float zoom, int max_iteration)
{
// Get the index of the current element
float pos_x = map_x(image_x, res_x, 1.0);
float pos_y = map_y(image_y, res_y, 1.0);
float x = pos_x;
float y = pos_y;
float xtemp, xx, yy;
#ifdef CACHE
int storeable = 1;
#endif
int iteration = 0;
#ifdef CACHE
// Look up our cache
iteration = cached_iteration(pos_x, pos_y);
if (iteration > 0)
{
x = get_cached_x(pos_x, pos_y);
y = get_cached_y(pos_x, pos_y);
yy = y * y;
}
if (iteration < 0) storeable = 0;
#endif
while (iteration < max_iteration)
{
xx = x * x;
yy = y * y;
if ((xx) + (yy) > (4.0)) break;
y = pow((x + y), 2) - xx - yy;
y = y + 0.288;
xtemp = xx - yy + 0.353 + zoom;
x = xtemp;
iteration++;
}
if (iteration >= max_iteration)
{
return 0;
}
else
{
#ifdef CACHE
if (storeable == 1)
{
store_iteration(pos_x, pos_y, iteration, x, y);
}
#endif
return iteration;
}
}
void *thread_launcher(void *arguments)
{
piece_args *args;
args = (piece_args *) arguments;
int x,y, small_res_x, small_res_y, init_x, init_y, limit_x, limit_y;
int iteration, split, piece_x, piece_y;
if(args->total_threads != 1)
{
split = args->total_threads / 2;
}
else
{
split = 1;
}
if (args->thread_number > 0)
{
piece_x = args->thread_number % split;
piece_y = floor((float)args->thread_number / (float)split);
}
else
{
piece_x = 0;
piece_y = 0;
}
small_res_x = floor((float)args->res_x / (float)split);
small_res_y = floor((float)args->res_y / (float)split);
init_x = small_res_x * piece_x;
init_y = small_res_y * piece_y;
limit_x = init_x + small_res_x;
limit_y = init_y + small_res_y;
for (y = init_y; y < limit_y; y++)
{
for (x = init_x; x < limit_x; x++)
{
#ifndef JULIA
iteration_pixels[x + (y * args->res_x)] = mandelbrot_point(args->res_x, args->res_y, x, y, args->zoom, args->max_iteration);
#else
iteration_pixels[x + (y * args->res_x)] = julia_point(args->res_x, args->res_y, x, y, args->zoom, args->max_iteration);
#endif
}
}
}
int get_cpus()
{
int number_of_cores = 0;
number_of_cores = sysconf(_SC_NPROCESSORS_ONLN);
return number_of_cores;
}
int main(int argn, char **argv)
{
// Init SDL
if(SDL_Init(SDL_INIT_VIDEO) != 0)
fprintf(stderr, "Could not initialize SDL: %s\n", SDL_GetError());
printf("SDL Initialized\n");
// Create screen surface
SDL_Surface *screen;
int res_x = 800;
int res_y = 600;
int number_threads = get_cpus();
printf("Number of threads autodetect: %d\n", number_threads);
#ifdef CACHE
// Init our cached points
cached_points = malloc(res_y * 1000 * sizeof(int *));
cached_x = malloc(res_y * 1000 * sizeof(float *));
cached_y = malloc(res_y * 1000 * sizeof(float *));
if (cached_points == NULL)
{
fprintf(stderr, "Bad luck, out of memory\n");
return 2;
}
int count;
for (count = 0; count < res_y * 1000; count++)
{
cached_points[count] = malloc(res_x * 1000 * sizeof(int));
if(cached_points[count] == NULL)
{
fprintf(stderr, "Bad luck, out of memory\n");
return 2;
}
cached_x[count] = malloc(res_x * 1000 * sizeof(float));
cached_y[count] = malloc(res_x * 1000 * sizeof(float));
/*for (count2 = 0; count2 < res_x * 100; count2++)
{
cached_points[count][count2] = -1;
}*/
}
printf("Cache ready\n");
#endif
// screen = SDL_SetVideoMode(res_x, res_y, 0, SDL_HWSURFACE|SDL_DOUBLEBUF);
screen = SDL_SetVideoMode(res_x, res_y, 0, SDL_DOUBLEBUF);
if(!screen)
fprintf(stderr,"Could not set video mode: %s\n",SDL_GetError());
// Prepare the resolution and sizes and colors, threads...
int i;
iteration_pixels = malloc(res_x * res_y * sizeof(int));
pthread_t threads[number_threads];
piece_args arguments[number_threads];
printf("Rendering...\n");
float zoom;
#ifndef JULIA
for (zoom = 1.0; zoom > 0.0001 ; zoom = zoom * 0.98)
#else
for (zoom = 1.0; zoom > -2.5 ; zoom -= 0.01)
#endif
{
i = 0;
int iteration, max_iteration, x, y, res;
if((zoom < -0.02) && (zoom > -1.0))
{
max_iteration = 100;
}
else
{
max_iteration = 170;
}
int thread_count;
for(thread_count = 0; thread_count < number_threads; thread_count++)
{
arguments[thread_count].res_x = res_x;
arguments[thread_count].res_y = res_y;
arguments[thread_count].zoom = zoom;
arguments[thread_count].max_iteration = max_iteration;
arguments[thread_count].total_threads = number_threads;
arguments[thread_count].thread_number = thread_count;
pthread_create( &threads[thread_count], NULL, thread_launcher, (void*) &arguments[thread_count]);
}
for(thread_count = 0; thread_count < number_threads; thread_count++)
{
res = pthread_join(threads[thread_count], NULL);
if (res != 0)
{
printf("Error in %d thread\n", thread_count);
}
}
int rank;
Uint32 *pixel;
rank = screen->pitch/sizeof(Uint32);
pixel = (Uint32*)screen->pixels;
for(y = 0; y < res_y ; y++)
{
for(x = 0; x < res_x; x++)
{
iteration = iteration_pixels[x + y * res_x];
if ((iteration < 128) && (iteration > 0)) {
pixel[x + y * rank] = SDL_MapRGBA(screen->format,
0,
20 + iteration,
0,
255);
}
else if ((iteration >= 128) && (iteration < max_iteration))
{
pixel[x + y * rank] = SDL_MapRGBA(screen->format,
iteration,
148,
iteration,
255);
}
else
{
pixel[x + y * rank] = SDL_MapRGBA(screen->format,
0,
0,
0,
255);
}
}
}
SDL_Flip(screen);
}
// printf("Max Iteration value: %d\n", max_iter);
SDL_Event ev;
int active;
active = 1;
while(active)
{
/* Handle events */
while(SDL_PollEvent(&ev))
{
if(ev.type == SDL_QUIT)
active = 0; /* End */
}
}
SDL_Quit();
return 0;
}

BIN
mandel_classic.o Normal file

Binary file not shown.

45
mandelbrot_kernel.cl Normal file
View file

@ -0,0 +1,45 @@
float map_x(int x, int width)
{
return (((float)x / (float)width) * 3.5) - 2.5;
}
float map_y(int y, int height)
{
return (((float)y / (float)height) * 2.0) - 1.0;
}
__kernel void mandelbrot_point(__global const int res_x, __global const int res_y, __global const int line, __global int *graph_line)
{
// Get the index of the current element
int image_x = get_global_id(0);
int image_y = line;
float pos_x = map_x(image_x, res_x);
float pos_y = map_y(image_y, res_y);
float x = 0.0;
float y = 0.0;
int iteration = 0;
int max_iteration = 255;
float xtemp;
while (iteration < max_iteration)
{
xtemp = x * x - y * y + pos_x;
y = 2.0 * x * y + pos_y;
x = xtemp;
iteration++;
if ((x * x) + (y * y) >= (4.0)) break;
}
if (iteration >= max_iteration)
{
graph_line[image_x] = 0;
}
else
{
graph_line[image_x] = iteration;
}
}

BIN
mandelclassic Executable file

Binary file not shown.

BIN
test Executable file

Binary file not shown.

301
test.c Normal file
View file

@ -0,0 +1,301 @@
#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#include <SDL.h>
#define MAX_SOURCE_SIZE (0x100000)
#ifdef CACHE
int** cached_points;
int** cached_x;
int** cached_y;
#endif
int get_x (int linear_point, int width)
{
return linear_point % width;
}
int get_y (int linear_point, int height)
{
return floor(linear_point / height);
}
double map_x(int x, int width, double zoom)
{
#ifndef JULIA
return (((double)x / (double)width) * (3.5 * zoom)) - (2.5 - (1.0 - zoom));
#else
return (((double)x / (double)width) * (3.5 * zoom)) - (1.7 - (1.0 - zoom));
#endif
}
double map_y(int y, int height, double zoom)
{
return (((double)y / (double)height) * (2.0 * zoom)) - (1.0 - (1.0 - zoom));
}
#ifdef CACHE
int cached_iteration(double pos_x, double pos_y)
{
double centered_x = pos_x + 2.5;
double centered_y = pos_y + 1.0;
double temp_x = floor(centered_x * 1000.0);
double temp_y = floor(centered_y * 1000.0);
int trs_pos_x = (int)temp_x;
int trs_pos_y = (int)temp_y;
return cached_points[trs_pos_x][trs_pos_y];
}
double get_cached_x(double pos_x, double pos_y)
{
double centered_x = pos_x + 2.5;
double centered_y = pos_y + 1.0;
double temp_x = floor(centered_x * 1000.0);
double temp_y = floor(centered_y * 1000.0);
int trs_pos_x = (int)temp_x;
int trs_pos_y = (int)temp_y;
return cached_x[trs_pos_x][trs_pos_y];
}
double get_cached_y(double pos_x, double pos_y)
{
double centered_x = pos_x + 2.5;
double centered_y = pos_y + 1.0;
double temp_x = floor(centered_x * 1000.0);
double temp_y = floor(centered_y * 1000.0);
int trs_pos_x = (int)temp_x;
int trs_pos_y = (int)temp_y;
return cached_y[trs_pos_x][trs_pos_y];
}
void store_iteration(double pos_x, double pos_y, int iteration, double x, double y)
{
double centered_x = pos_x + 2.5;
double centered_y = pos_y + 1.0;
double temp_x = floor(centered_x * 1000.0);
double temp_y = floor(centered_y * 1000.0);
int trs_pos_x = (int)temp_x;
int trs_pos_y = (int)temp_y;
cached_points[trs_pos_x][trs_pos_y] = iteration;
cached_x[trs_pos_x][trs_pos_y] = x;
cached_y[trs_pos_x][trs_pos_y] = y;
}
#endif
int mandelbrot_point(int res_x, int res_y, int image_x, int image_y, double zoom, int max_iteration)
{
return abs(floor(sin(((double)image_x + zoom) * 0.1) * 127) + floor(cos(((double)image_y + zoom) * 0.1) * 127));
}
int julia_point(int res_x, int res_y, int image_x, int image_y, double zoom, int max_iteration)
{
// Get the index of the current element
double pos_x = map_x(image_x, res_x, 1.0);
double pos_y = map_y(image_y, res_y, 1.0);
double x = pos_x;
double y = pos_y;
double q, x_term;
double xtemp, xx, yy;
#ifdef CACHE
int storeable = 1;
#endif
int iteration = 0;
#ifdef CACHE
// Look up our cache
iteration = cached_iteration(pos_x, pos_y);
if (iteration > 0)
{
x = get_cached_x(pos_x, pos_y);
y = get_cached_y(pos_x, pos_y);
yy = y * y;
}
if (iteration < 0) storeable = 0;
#endif
while (iteration < max_iteration)
{
xx = x * x;
yy = y * y;
if ((xx) + (yy) > (4.0)) break;
y = pow((x + y), 2) - xx - yy;
y = y + 0.288;
xtemp = xx - yy + 0.353 + zoom;
x = xtemp;
iteration++;
}
if (iteration >= max_iteration)
{
return 0;
}
else
{
#ifdef CACHE
if (storeable == 1)
{
store_iteration(pos_x, pos_y, iteration, x, y);
}
#endif
return iteration;
}
}
int main(int argn, char **argv) {
// Init SDL
if(SDL_Init(SDL_INIT_VIDEO) != 0)
fprintf(stderr, "Could not initialize SDL: %s\n", SDL_GetError());
printf("SDL Initialized\n");
// Create screen surface
SDL_Surface *screen;
int res_x = 800;
int res_y = 600;
int total_res = res_x * res_y;
#ifdef CACHE
// Init our cached points
cached_points = malloc(res_y * 1000 * sizeof(int *));
cached_x = malloc(res_y * 1000 * sizeof(double *));
cached_y = malloc(res_y * 1000 * sizeof(double *));
if (cached_points == NULL)
{
fprintf(stderr, "Bad luck, out of memory\n");
return 2;
}
int count;
for (count = 0; count < res_y * 1000; count++)
{
cached_points[count] = malloc(res_x * 1000 * sizeof(int));
if(cached_points[count] == NULL)
{
fprintf(stderr, "Bad luck, out of memory\n");
return 2;
}
cached_x[count] = malloc(res_x * 1000 * sizeof(double));
cached_y[count] = malloc(res_x * 1000 * sizeof(double));
/*for (count2 = 0; count2 < res_x * 100; count2++)
{
cached_points[count][count2] = -1;
}*/
}
printf("Cache ready\n");
#endif
// screen = SDL_SetVideoMode(res_x, res_y, 0, SDL_HWSURFACE|SDL_DOUBLEBUF);
screen = SDL_SetVideoMode(res_x, res_y, 0, SDL_DOUBLEBUF);
if(!screen)
fprintf(stderr,"Could not set video mode: %s\n",SDL_GetError());
// Prepare the resolution and sizes and colors...
int i;
int temp;
const int ITERATIONS = 256;
printf("Rendering...\n");
double zoom;
#ifndef JULIA
for (zoom = 1.0; zoom < 200.0 ; zoom += 1.0)
#else
for (zoom = 1.0; zoom > -2.5 ; zoom -= 0.01)
#endif
{
i = 0;
int iteration, max_iteration, x, y;
if((zoom < -0.02) && (zoom > -1.0))
{
max_iteration = 100;
}
else
{
max_iteration = 255;
}
int col_value;
Uint32 *pixel;
int rank;
// Lock surface
// SDL_LockSurface(screen);
rank = screen->pitch/sizeof(Uint32);
pixel = (Uint32*)screen->pixels;
/* Draw all dots */
for(y = 0;y < res_y;y++)
{
for(x = 0;x < res_x;x++)
{
#ifndef JULIA
iteration = mandelbrot_point(res_x, res_y, x, y, zoom, max_iteration);
#else
iteration = julia_point(res_x, res_y, x, y, zoom, max_iteration);
#endif
if ((iteration < 128) && (iteration > 0)) {
pixel[x + y * rank] = SDL_MapRGBA(screen->format,
0,
20 + iteration,
0,
255);
}
else if ((iteration >= 128) && (iteration < max_iteration))
{
pixel[x + y * rank] = SDL_MapRGBA(screen->format,
iteration,
200,
iteration,
255);
}
else
{
pixel[x + y * rank] = SDL_MapRGBA(screen->format,
0,
0,
0,
255);
}
i++;
}
}
// Unlock surface
// SDL_UnlockSurface(screen);
// Draw to the screen
SDL_Flip(screen);
}
// printf("Max Iteration value: %d\n", max_iter);
SDL_Event ev;
int active;
active = 1;
while(active)
{
/* Handle events */
while(SDL_PollEvent(&ev))
{
if(ev.type == SDL_QUIT)
active = 0; /* End */
}
}
SDL_Quit();
return 0;
}

BIN
test.o Normal file

Binary file not shown.

12
vector_add_kernel.cl Normal file
View file

@ -0,0 +1,12 @@
int vec_add (int a, int b) {
return (a + b) * 3;
}
__kernel void vector_add(__global int *A, __global int *B, __global int *C) {
// Get the index of the current element
int i = get_global_id(0);
// Do the operation
C[i] = vec_add (A[i], B[i]);
}