Initial commit

This commit is contained in:
José Carlos Cuevas 2015-10-11 14:12:32 +02:00
commit d41e06e02b
4 changed files with 554 additions and 0 deletions

7
.gitignore vendored Normal file
View file

@ -0,0 +1,7 @@
*.sh
*.pyc
*.swp
server/bin/
server/lib/
server/include/
server/local/

304
client/tempino/tempino.ino Normal file
View file

@ -0,0 +1,304 @@
#include <registers.h>
#include <pin_magic.h>
#include <Adafruit_TFTLCD.h>
// Paint example specifically for the TFTLCD breakout board.
// If using the Arduino shield, use the tftpaint_shield.pde sketch instead!
// DOES NOT CURRENTLY WORK ON ARDUINO LEONARDO
#include <Adafruit_GFX.h> // Core graphics library
#include <Adafruit_TFTLCD.h> // Hardware-specific library
#include <TouchScreen.h>
#if defined(__SAM3X8E__)
#undef __FlashStringHelper::F(string_literal)
#define F(string_literal) string_literal
#endif
// When using the BREAKOUT BOARD only, use these 8 data lines to the LCD:
// For the Arduino Uno, Duemilanove, Diecimila, etc.:
// D0 connects to digital pin 8 (Notice these are
// D1 connects to digital pin 9 NOT in order!)
// D2 connects to digital pin 2
// D3 connects to digital pin 3
// D4 connects to digital pin 4
// D5 connects to digital pin 5
// D6 connects to digital pin 6
// D7 connects to digital pin 7
// For the Arduino Mega, use digital pins 22 through 29
// (on the 2-row header at the end of the board).
// D0 connects to digital pin 22
// D1 connects to digital pin 23
// D2 connects to digital pin 24
// D3 connects to digital pin 25
// D4 connects to digital pin 26
// D5 connects to digital pin 27
// D6 connects to digital pin 28
// D7 connects to digital pin 29
// For the Arduino Due, use digital pins 33 through 40
// (on the 2-row header at the end of the board).
// D0 connects to digital pin 33
// D1 connects to digital pin 34
// D2 connects to digital pin 35
// D3 connects to digital pin 36
// D4 connects to digital pin 37
// D5 connects to digital pin 38
// D6 connects to digital pin 39
// D7 connects to digital pin 40
// #define YP A1 // must be an analog pin, use "An" notation!
// #define XM A2 // must be an analog pin, use "An" notation!
// #define YM 7 // can be a digital pin
///#define XP 6 // can be a digital pin
#define XM A1
#define YP A2
#define YM 6
#define XP 7
#define TS_MINX 150
#define TS_MINY 120
#define TS_MAXX 880
#define TS_MAXY 940
//#define TS_MINX 131
//#define TS_MINY 159
//#define TS_MAXX 942
//#define TS_MAXY 878
// For better pressure precision, we need to know the resistance
// between X+ and X- Use any multimeter to read it
// For the one we're using, its 300 ohms across the X plate
TouchScreen ts = TouchScreen(XP, YP, XM, YM, 300);
#define LCD_CS A3
#define LCD_CD A2
#define LCD_WR A1
#define LCD_RD A0
// optional
#define LCD_RESET A4
// Assign human-readable names to some common 16-bit color values:
#define BLACK 0x0000
#define BLUE 0x001F
#define RED 0xF800
#define GREEN 0x07E0
#define CYAN 0x07FF
#define MAGENTA 0xF81F
#define YELLOW 0xFFE0
#define WHITE 0xFFFF
Adafruit_TFTLCD tft(LCD_CS, LCD_CD, LCD_WR, LCD_RD, LCD_RESET);
// Make the icons bigger or smaller
#define ICONSIZE 20
void setup(void) {
Serial.begin(9600);
tft.reset();
// There are various drivers, we check them. This code has been brought
// by https://github.com/adafruit/TFTLCD-Library
if(identifier == 0x9325) {
Serial.println(F("Found ILI9325 LCD driver"));
} else if(identifier == 0x9327) {
Serial.println(F("Found ILI9327 LCD driver"));
} else if(identifier == 0x9328) {
Serial.println(F("Found ILI9328 LCD driver"));
} else if(identifier == 0x7575) {
Serial.println(F("Found HX8347G LCD driver"));
} else if(identifier == 0x9341) {
Serial.println(F("Found ILI9341 LCD driver"));
} else if(identifier == 0x8357) {
Serial.println(F("Found HX8357D LCD driver"));
} else if(identifier == 0x0154) {
Serial.println(F("Found S6D0154 LCD driver"));
} else if(identifier == 0x9488) {
Serial.println(F("Found ILI9488 LCD driver"));
} else {
Serial.print(F("Unknown LCD driver chip: "));
Serial.println(identifier, HEX);
Serial.println(F("If using the Adafruit 2.8\" TFT Arduino shield, the line:"));
Serial.println(F(" #define USE_ADAFRUIT_SHIELD_PINOUT"));
Serial.println(F("should appear in the library header (Adafruit_TFT.h)."));
Serial.println(F("If using the breakout board, it should NOT be #defined!"));
Serial.println(F("Also if using the breakout, double-check that all wiring"));
Serial.println(F("matches the tutorial."));
return;
}
tft.begin(identifier);
// I happen to like this position, feel free to
// experiment and change it
tft.setRotation(2);
tft.fillScreen(BLACK);
drawHeader(false);
pinMode(13, OUTPUT);
}
void drawHeader(bool loading) {
tft.fillRect(10, 5, 240, 30, BLACK);
if (!loading) {
tft.setCursor(10, 5);
tft.setTextSize(4);
tft.setTextColor(WHITE);
tft.println("Sensors");
} else {
tft.setCursor(10, 5);
tft.setTextSize(4);
tft.setTextColor(WHITE);
tft.println("Loading");
}
}
void drawCPU(int x, int y) {
int bound = ICONSIZE / 10;
int factor = ICONSIZE / 4;
int dieSize = ICONSIZE - bound * 2;
int added = 0;
tft.fillRect(x, y, x + ICONSIZE, y + ICONSIZE, BLACK);
for (int c=1;c < 4; c++) {
added = factor * c;
tft.drawLine(x + added, y, x + added, y + ICONSIZE, YELLOW);
tft.drawLine(x + added, y, x + added, y + ICONSIZE, YELLOW);
tft.drawLine(x, y + added, x + ICONSIZE, y + added, YELLOW);
tft.drawLine(x, y + added, x + ICONSIZE, y + added, YELLOW);
}
tft.fillRect(x + bound, y + bound, dieSize, dieSize, WHITE);
}
void drawFan(int x, int y) {
int radius = ICONSIZE / 2;
int centerX = x + radius;
int centerY = y + radius;
tft.fillRect(x, y, x + ICONSIZE, y + ICONSIZE, BLACK);
for(int r = 1; r < 6; r++) {
tft.drawCircle(centerX, centerY, radius / r, BLUE);
}
}
void drawSystem(int x, int y) {
int width = ICONSIZE / 3;
tft.fillRect(x, y, x + ICONSIZE, y + ICONSIZE, BLACK);
tft.fillRect(x + width, y, width, ICONSIZE, GREEN);
tft.drawRect(x + width + 1, y + 1, width - 2 , ICONSIZE - 2, BLACK);
}
void drawTemp(int x, int y, String value) {
int horizontal = x + ICONSIZE + (ICONSIZE / 8);
int vertical = y + (ICONSIZE / 3);
char text[50];
tft.fillRect(horizontal, vertical, 240, ICONSIZE, BLACK);
tft.setCursor(horizontal, vertical);
tft.setTextSize(2);
tft.setTextColor(WHITE);
sprintf(text, "%s C", value.c_str());
tft.println(text);
}
void drawRPM(int x, int y, String value) {
int horizontal = x + ICONSIZE + (ICONSIZE / 8);
int vertical = y + (ICONSIZE / 3);
char text[50];
tft.fillRect(horizontal, vertical, 240, ICONSIZE, BLACK);
tft.setCursor(horizontal, vertical);
tft.setTextSize(2);
tft.setTextColor(WHITE);
sprintf(text, "%s RPM", value.c_str());
tft.println(text);
}
// Slice and dice the string so we
// get the commands to display
String getCommand(String str) {
int pos = str.lastIndexOf(';');
if (pos > -1) {
return str.substring(pos + 1, str.length());
} else {
return str;
}
}
// Get the rest of the string so it shrinks
String advanceString(String input) {
int pos = input.lastIndexOf(';');
if (pos > -1) {
return input.substring(0, pos);
} else {
return input;
}
}
void loop()
{
String input;
String temp;
String command;
String sensorType;
String value;
int len;
int cursorPos = 20;
int increments = 30;
while(Serial.available() > 0) {
cursorPos = 40;
// Get the serial string
input = Serial.readStringUntil('\n');
while (input.length() > 0)
{
command = getCommand(input);
len = 0;
while((len < command.length() && (command.charAt(len) != '='))) {
len++;
}
// Get the command part and the data part in
// different variables
sensorType = command.substring(0, len);
value = command.substring(len + 1, command.length());
if(sensorType.equals("CPU")) {
drawCPU(10, cursorPos);
drawTemp(10, cursorPos, value);
}
if(sensorType.equals("FAN")) {
drawFan(10, cursorPos);
drawRPM(10, cursorPos, value);
}
if(sensorType.equals("SYS")) {
drawSystem(10, cursorPos);
drawTemp(10, cursorPos, value);
}
// Make sure the next icon appears below
cursorPos = cursorPos + increments;
if (input.lastIndexOf(';') != -1) {
// Keep shrinking
temp = advanceString(input);
input = temp;
} else {
// Finish the while loop
input = "";
}
}
}
}

3
server/requirements.txt Normal file
View file

@ -0,0 +1,3 @@
PySensors==0.0.3
argparse==1.2.1
pyserial==2.7

240
server/server.py Normal file
View file

@ -0,0 +1,240 @@
#!/usr/bin/env python
import serial
import sensors
import os
import re
import subprocess
import time
import signal
running = True
# Be careful if you use Python 3, it'll send Unicode and
# the Arduino won't know what to do with it. Add a b before
# the strings or use the conversion functions before sending
def signal_handler(signal, frame):
global running
print("Exiting...")
running = False
def available_cpu_count():
""" Number of available virtual or physical CPUs on this system, i.e.
user/real as output by time(1) when called with an optimally scaling
userspace-only program"""
# cpuset
# cpuset may restrict the number of *available* processors
try:
m = re.search(r'(?m)^Cpus_allowed:\s*(.*)$',
open('/proc/self/status').read())
if m:
res = bin(int(m.group(1).replace(',', ''), 16)).count('1')
if res > 0:
return res
except IOError:
pass
# Python 2.6+
try:
import multiprocessing
return multiprocessing.cpu_count()
except (ImportError, NotImplementedError):
pass
# http://code.google.com/p/psutil/
try:
import psutil
return psutil.cpu_count() # psutil.NUM_CPUS on old versions
except (ImportError, AttributeError):
pass
# POSIX
try:
res = int(os.sysconf('SC_NPROCESSORS_ONLN'))
if res > 0:
return res
except (AttributeError, ValueError):
pass
# Windows
try:
res = int(os.environ['NUMBER_OF_PROCESSORS'])
if res > 0:
return res
except (KeyError, ValueError):
pass
# jython
try:
from java.lang import Runtime
runtime = Runtime.getRuntime()
res = runtime.availableProcessors()
if res > 0:
return res
except ImportError:
pass
# BSD
try:
sysctl = subprocess.Popen(['sysctl', '-n', 'hw.ncpu'],
stdout=subprocess.PIPE)
scStdout = sysctl.communicate()[0]
res = int(scStdout)
if res > 0:
return res
except (OSError, ValueError):
pass
# Linux
try:
res = open('/proc/cpuinfo').read().count('processor\t:')
if res > 0:
return res
except IOError:
pass
# Solaris
try:
pseudoDevices = os.listdir('/devices/pseudo/')
res = 0
for pd in pseudoDevices:
if re.match(r'^cpuid@[0-9]+$', pd):
res += 1
if res > 0:
return res
except OSError:
pass
# Other UNIXes (heuristic)
try:
try:
dmesg = open('/var/run/dmesg.boot').read()
except IOError:
dmesgProcess = subprocess.Popen(['dmesg'], stdout=subprocess.PIPE)
dmesg = dmesgProcess.communicate()[0]
res = 0
while '\ncpu' + str(res) + ':' in dmesg:
res += 1
if res > 0:
return res
except OSError:
pass
raise Exception('Can not determine number of CPUs on this system')
class Data(object):
"""
Data encapsulation
"""
def __init__(self, label, value):
self.label = label
if (label is not None):
self.value = int(value)
else:
self.value = value
def __str__(self):
return self.label + " {}".format(self.value)
class Sensors(object):
"""
Parses the output of the sensors command
"""
def __init__(self):
print("Getting sensors ready")
sensors.init()
self.data = {}
self.cpus = available_cpu_count()
self.update()
def update(self):
print("Reading sensors")
cpu_counter = 0
fan_count = 0
for chip in sensors.iter_detected_chips():
for feature in chip:
if feature.get_value() > 0 and feature.label != 'CPUTIN':
if 'cpu' in feature.label.lower() or 'core' in feature.label.lower() and cpu_counter < self.cpus:
self.data['CPU{}'.format(cpu_counter)] = Data(feature.label, feature.get_value())
cpu_counter += 1
elif 'fan' in feature.label.lower():
self.data['FAN{}'.format(fan_count)] = Data(feature.label, feature.get_value())
fan_count += 1
elif 'sys' in feature.label.lower():
self.data['SYSTEM'] = Data(feature.label, feature.get_value())
class Arduino(object):
"""
With this class we communicate with the Arduino
"""
def __init__(self):
# TODO: Should be configurable or read from command line
print("Connecting to Arduino")
self.serial = serial.Serial('/dev/ttyACM0', 9600)
time.sleep(2)
def close(self):
self.serial.close()
def send(self, sensors_data):
print("Sending data")
sensors_data.update()
data = sensors_data.data
stream = []
keys = data.keys()
keys.sort()
for key in keys:
if 'CPU' in key:
stream.append("CPU={}".format(data[key]))
if 'FAN' in key:
stream.append("FAN={}".format(data[key]))
if 'SYS' in key:
stream.append("SYS={}".format(data[key]))
print("Sending {} datagrams".format(len(stream)))
res = ";".join(stream)
print(res)
self.serial.write(res + "\n")
if __name__ == "__main__":
signal.signal(signal.SIGINT, signal_handler)
arduino = Arduino()
sensor_data = Sensors()
while running:
arduino.send(sensor_data)
# This should be configurable too
time.sleep(3)
arduino.close()