mandelbrot_study/main.c

263 lines
8.9 KiB
C
Raw Normal View History

2013-08-29 19:31:20 +02:00
#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#include <time.h>
2013-08-29 19:31:20 +02:00
#ifdef __APPLE__
#include <OpenCL/opencl.h>
#else
#include <CL/cl.h>
#endif
#include <SDL.h>
#define MAX_SOURCE_SIZE (0x100000)
int main(int argn, char **argv) {
// Init SDL
if(SDL_Init(SDL_INIT_VIDEO) != 0)
fprintf(stderr, "Could not initialize SDL: %s\n", SDL_GetError());
printf("SDL Initialized\n");
// Create screen surface
SDL_Surface *screen;
int res_x = 800;
int res_y = 600;
int current_line = 0;
int julia_mode = 0;
if (argn == 1)
{
julia_mode = 0;
}
else if ((argn == 2) && (strcmp(argv[1], "-julia") == 0))
{
julia_mode = 1;
printf("Julia mode activated...\n");
}
2013-08-29 19:31:20 +02:00
screen = SDL_SetVideoMode(res_x, res_y, 0, SDL_DOUBLEBUF);
2013-08-29 19:31:20 +02:00
if(!screen)
fprintf(stderr,"Could not set video mode: %s\n",SDL_GetError());
// Prepare the resolution and sizes and colors...
const int ITERATIONS = 256;
// Load the kernel source code into the array source_str
FILE *fp;
char *source_str;
size_t source_size;
if (julia_mode == 0)
fp = fopen("mandelbrot_kernel.cl", "r");
else
fp = fopen("julia_kernel.cl", "r");
2013-08-29 19:31:20 +02:00
if (!fp) {
fprintf(stderr, "Failed to load kernel.\n");
exit(1);
}
source_str = (char*)malloc(MAX_SOURCE_SIZE);
source_size = fread( source_str, 1, MAX_SOURCE_SIZE, fp);
fclose( fp );
// Get platform and device information
cl_platform_id platform_id = NULL;
cl_device_id device_id = NULL;
cl_uint ret_num_devices;
cl_uint ret_num_platforms;
cl_int ret = clGetPlatformIDs(1, &platform_id, &ret_num_platforms);
ret = clGetDeviceIDs( platform_id, CL_DEVICE_TYPE_GPU, 1,
&device_id, &ret_num_devices);
// Create an OpenCL context
cl_context context = clCreateContext( NULL, 1, &device_id, NULL, NULL, &ret);
// Create a command queue
cl_command_queue command_queue = clCreateCommandQueue(context, device_id, 0, &ret);
// Create memory buffers on the device for returning iterations
// Input parameters
cl_mem kernel_res_x = clCreateBuffer(context, CL_MEM_READ_ONLY | CL_MEM_COPY_HOST_PTR,
sizeof(int), &res_x, &ret);
cl_mem kernel_res_y = clCreateBuffer(context, CL_MEM_READ_ONLY | CL_MEM_COPY_HOST_PTR,
sizeof(int), &res_y, &ret);
2013-08-29 19:31:20 +02:00
cl_mem kernel_current_line = clCreateBuffer(context, CL_MEM_READ_ONLY,
sizeof(int), NULL, &ret);
cl_mem kernel_zoom_level = clCreateBuffer(context, CL_MEM_READ_ONLY,
sizeof(float), NULL, &ret);
// Output buffer
2013-08-29 19:31:20 +02:00
cl_mem graph_mem_obj = clCreateBuffer(context, CL_MEM_WRITE_ONLY,
res_x * sizeof(int), NULL, &ret);
2013-08-29 19:31:20 +02:00
// Create a program from the kernel source
cl_program program = clCreateProgramWithSource(context, 1,
(const char **)&source_str, (const size_t *)&source_size, &ret);
// Build the program
ret = clBuildProgram(program, 1, &device_id, NULL, NULL, NULL);
// Check if it is correct
printf("clBuildProgram\n");
cl_build_status build_status;
ret = clGetProgramBuildInfo(program, device_id, CL_PROGRAM_BUILD_STATUS, sizeof(cl_build_status), &build_status, NULL);
char *build_log;
size_t ret_val_size;
ret = clGetProgramBuildInfo(program, device_id, CL_PROGRAM_BUILD_LOG, 0, NULL, &ret_val_size);
build_log = (char *) malloc((ret_val_size + 1) * sizeof(char));
ret = clGetProgramBuildInfo(program, device_id, CL_PROGRAM_BUILD_LOG, ret_val_size, build_log, NULL);
build_log[ret_val_size] = '\0';
printf("BUILD LOG: \n %s", build_log);
printf("program built\n");
2013-08-29 19:31:20 +02:00
// Create the OpenCL kernel
cl_kernel kernel = clCreateKernel(program, "fractal_point", &ret);
2013-08-29 19:31:20 +02:00
// Common kernel params
ret = clSetKernelArg(kernel, 0, sizeof(cl_mem), (void *) &kernel_res_x);
ret = clSetKernelArg(kernel, 1, sizeof(cl_mem), (void *) &kernel_res_y);
ret = clSetKernelArg(kernel, 4, sizeof(cl_mem), (void *) &graph_mem_obj);
int graph_line[res_x]; // (int*)malloc(res_x * sizeof(int));
float zoom = 1.0; // Our current zoom level
float stop_point;
2013-08-29 19:31:20 +02:00
if (julia_mode == 0)
stop_point = 0.00001;
else
stop_point = -2.5;
clock_t start = clock();
while(zoom > stop_point)
2013-08-29 19:31:20 +02:00
{
for (current_line = 0; current_line < res_y; current_line++)
2013-08-29 19:31:20 +02:00
{
// Set the arguments of the kernel
ret = clEnqueueWriteBuffer(command_queue, kernel_current_line, CL_TRUE, 0,
sizeof(int), &current_line, 0, NULL, NULL);
ret = clEnqueueWriteBuffer(command_queue, kernel_zoom_level, CL_TRUE, 0,
sizeof(float), &zoom, 0, NULL, NULL);
clFinish(command_queue);
2013-08-29 19:31:20 +02:00
ret = clSetKernelArg(kernel, 2, sizeof(cl_mem), (void *) &kernel_current_line);
ret = clSetKernelArg(kernel, 3, sizeof(cl_mem), (void *) &kernel_zoom_level);
// Execute the OpenCL kernel on the list
size_t global_item_size = res_x; // Process the entire line
size_t local_item_size = 32; // Process in groups of 64
ret = clEnqueueNDRangeKernel(command_queue, kernel, 1, NULL,
&global_item_size, &local_item_size, 0, NULL, NULL);
if (ret != CL_SUCCESS)
{
// printf("Error while executing kernel\n");
// printf("Error code %d\n", ret);
}
// Wait for the computation to finish
clFinish(command_queue);
// Read the memory buffer graph_mem_obj on the device to the local variable graph_dots
ret = clEnqueueReadBuffer(command_queue, graph_mem_obj, CL_TRUE, 0,
res_x * sizeof(int), graph_line, 0, NULL, NULL);
if (ret != CL_SUCCESS)
printf("Error while reading results buffer\n");
clFinish(command_queue);
int line_count;
Uint32 *pixel;
// Lock surface
// SDL_LockSurface(screen);
// rank = screen->pitch/sizeof(Uint32);
pixel = (Uint32*)screen->pixels;
int iteration;
for (line_count = 0; line_count < res_x; line_count++)
{
// int temp_val = graph_line[line_count];
// graph_dots[(current_line * res_x) + line_count] = temp_val;
// Get the iterations for the point
// printf("Point %d\n", i);
iteration = graph_line[line_count];
if ((iteration < 128) && (iteration > 0)) {
pixel[(current_line * res_x) + line_count] = SDL_MapRGBA(screen->format,
0,
20 + iteration,
0,
255);
}
else if ((iteration >= 128) && (iteration < ITERATIONS))
{
pixel[(current_line * res_x) + line_count] = SDL_MapRGBA(screen->format,
iteration,
148,
iteration,
255);
}
else
{
pixel[(current_line * res_x) + line_count] = SDL_MapRGBA(screen->format,
0,
0,
0,
255);
}
}
2013-08-29 19:31:20 +02:00
}
if (julia_mode == 0)
zoom = zoom * 0.98;
else
zoom -= 0.01;
2013-08-29 19:31:20 +02:00
// Draw to the screen
SDL_Flip(screen);
}
2013-08-29 19:31:20 +02:00
printf("Time elapsed %0.5f seconds\n", ((double)clock() - start) / CLOCKS_PER_SEC);
2013-08-29 19:31:20 +02:00
// Clean up
ret = clFlush(command_queue);
ret = clFinish(command_queue);
ret = clReleaseKernel(kernel);
ret = clReleaseProgram(program);
ret = clReleaseMemObject(kernel_res_x);
ret = clReleaseMemObject(kernel_res_y);
ret = clReleaseMemObject(kernel_current_line);
2013-08-29 19:31:20 +02:00
ret = clReleaseMemObject(graph_mem_obj);
ret = clReleaseCommandQueue(command_queue);
ret = clReleaseContext(context);
// free(A);
// free(B);
// free(graph_dots);
// free(graph_line);
2013-08-29 19:31:20 +02:00
SDL_Event ev;
int active;
active = 1;
while(active)
{
/* Handle events */
while(SDL_PollEvent(&ev))
{
if(ev.type == SDL_QUIT)
active = 0; /* End */
}
}
SDL_Quit();
return 0;
}